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Goal

actively and constructively promote and ensure the
guality and impact of fundamental, applied and
industrial research carried out at their facilities

LEAPS Integrated Platform — LIP

bring together experts in the field of Digital
Twinning, Machine Learning and Virtual
Diagnostic
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Digital Twin

Courtesy: Maxence Thevenet

physical twin /[

A

=t

A

I -

optimizer

output

input! $output v 1 ’
diital twi O 1]
Igital twin Element 1 <° ElementZJ »(_ source Transport 1
a
noise Accelerator Photon transport
Advanced
diagnostics

experimentalists can get familiar with the facilities - more efficient experiments
support the operators to increase the performance of the facility with respect to the experiments
capability to test new algorithms for control and optimization also exploiting machine learning

if real-time capable, usage for online control and diagnosis.

-> support on the way towards more automation / autonomy
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Increasing autonomy

Courtesy: Maxence Thevenet
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Advanced
diagnostics
« Data acquisition and data analysis (pipelines)  Fault diagnosis and supervisory control
» Get all relevant signals and provide understanding » Predict faults, prevent failures
* Provide data infrastructure, interfaces, etc. » Protect the system
« (Surrogate) modelling, simulations, digital twins <« Optimization and feedback control algorithms
* Understanding physics « Push the way of operation
* Requirement for predictions, development and control . Optimize performance
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Increasing autonomy

« Data acquisition and data analysis (pipelines)

» Get all relevant signals and provide understanding

* Provide data infrastructure, interfaces, etc.

Provides the data for
modeling identification
and validation

 (Surrogate) modelling, simulations, digital twins
» Understanding physics

Requirement for diagnosis,
predictions, and control
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Possibly provides the
interface for online
interaction

 Fault diagnosis and supervisory control

» Predict faults, prevent failures
» Protect the system
« Optimization and feedback control algorithms

« Push the way of operation

« Optimize performance
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RL for accelerator operation



Reinforcement Learning

Reinforcement Learning :[Agent
« machine learning algorithm with an
« Agent interacts with environment state reward action
(simulation or real world), S R, A,
« Take action based on PR
observation S,pq | iemimme= oot
« Receiving reward "
° 9 Plan ahead Sutton: Reinforcement Learning, an introduction
Goal: Apply reinforcement learning (RL) to accelerator operation
Examples and applications * Collaboration between KIT & DESY 2 years
« Games (AlphaGo) « 2 years project funded by Helmholtz Al: Initiative and
. Personalized recommendations Networking Fund by the Helmholtz Association
* Robotics * Research facilities:
« Traffic light control « ARES (DESY) Transferability?
. ... « FLUTE (KIT)
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Beam Focusing

Proof of concept example at ARES

Task

. Position and focus the electron beam on a
diagnostic screen in the ARES Experimental Area

Motivation
- Recurring problem from ARES operation.

- Simple enough to still understand what agent does,
yet complex enough to be interesting.

- ARES as an easily accessible testbed to eventually
map experiences to larger machines like European
XFEL
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Courtesy: Oliver Stein & Jan Kaiser

Gym Environments for Particle Accelerator Applications

,Digital Twin“ with standardised simulation and machine interfaces

Train RL agent

import accelerator_environments
import gym
from stable_baselines3 import TD3

Accelerator-Environments Project

- Train with fast iteration in simulation, apply on machine
_ . . model = TD3("M1lpPolicy", "ARESEA-J0SS-v0").learn(1000)
- Collection of environments implemented around

OpenAl Gym env = gym.make("ARESEA-Pydoocs-v@") Run on machine

- Very simple to move from simulation to machine, observation = env.reset()
various backends are provided done = False

while not done:
action = model.predict(observation)

- Interface for reinforcement learning and observation, _, done, _ = env.step(action)
optimisation algorithms Optimisation

- Compatible with popular RL and optimisation libraries such from scipy import optimize

as Stable Baselines3 and SciPy Optimize
env = gym.make("ARESEA-Pydoocs-v0")

( Machine Interface

High-Level Program read(channel)
e.g. custom DAQ, Optimiser, | Machine Specific I
RL agent Logic
or other write(channel, value)

(

env.reset()
Mmmmemoocaemcauq} bounds = optimize.Bounds(env.optimisation_space. low,

e.g. EuUXFEL, PETRA IV, ARES P . q
Flute, LCLS env.optimisation_space.high)
X = optimize.minimize(fun=env.objective_function,
x0=env.initial_actuators,
bounds=bounds)
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Defining an Optimisation Problem

AREAMQZM2 AREAMQZM3 AREABSCR1

Objective ] ] ] 0 I H D_,
Natural logarithm of the weighted sum of parameter U i U U U U ;

. , : | : X
differences O(xz) =In E ap [p—p'| AREAMQZM1  AREAMCVM1  AREAMCHM? E’gﬁ;'n":gg:a'
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1500 4

Actuators L = (lev kQ27 kQ:a ; AT, 5 OzCh) 1000 —> b= (e, py,00,0y)

T

Beam Parameters bs = (fz, ly, Oz, 0y) e TIE NI e e s

Reading Beam Parameters

1. Sum over pixels in x, y — filter to clean up

—— Profile (y)
1000 4 Filtered
FWHM
5004 ==~ H

2. Find widest interval edges > 0.5x the maximum,
call it FWHM

3. Beam position = centre between interval edges
4. Beam size = FWHM / 2.355
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Courtesy: Oliver Stein & Jan Kaiser

Translation to a Reinforcement Learning Task

Reward
Improvement in objective (difference of current and last
Step‘ S ObjeCtIVG) 7 (St, at) . O (331&) o O ($t+1)

Operator

otherwise

rifr>0
r(st,at){% . [ Agent ]<:| ot:(bg,bg,,ilit)

Observation A
Beam parameters (of this and previous time step)
Actuator values

Action a; — (Ak@l y Ak’@l 3 Ak’Qg y ) Aagv)
Delta of actuators values A R
4 L
Trainin g AREAMQZM2 ~ AREAMQZM3  AREABSCRT
Twin Delayed DDPG (TD3) N ﬂ N ﬂ N
- Benchmarked Stable Baselines3 implementation J U U U U I ’ ’

Open Al Gym environment implementation
Different beams and objectives are seen in training
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Control Room Application

Autonomous Beam Pos
1.Change magnet settings (optional)

SINBAD.MAGNETS/MAGNET.ML/AREAMQZM1/STRENGTH  ~

2.Choose desired beam parameters

Mx = = H_y =-
Apy' = 0.005 mm Ap_y'=0.005 mm
HUx' = 0.000 mm p_y'=0.000 mm

3.Setup the RL run

Agent Bayesian Optimisation

4.Run beam parameter optimisation

Ox = -
Aoy' = 0.005 mm
ox' =0.010 mm

Experiment name

o_y=-
Ao _y'=0.005 mm
o_y'=0.010 mm

Courtesy: Oliver Stein & Jan Kaiser

measure beam

Start Agent
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Simulation Experiment

What’s next and what are the challenges Time per step 0.03 seconds 10-30 seconds
Number of steps 600 000 5-10

At ARES
Transfer from simulation to machine has successfully demonstrated

Otherwise training would be impossible (600 000 steps in simulation ~ 5 hours, 33 steps/seconds, 0.03
seconds/step)

For training in simulation a fast and accurate model is required
Test agent on FLUTE (simulation and real accelerator) for transferability
How to train and act more efficiently? Training 600 000 steps, actions 5-10 steps needed
Include errors in simulation (quadrupole offset, screen offset, etc.)
Move to more complex tasks:
ARES start-up
RL applications at FLASH and the European XFEL - SASE tuning at FLASH

Problem: good and fast simulation required
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Fault diagnosis for SRF
cavities



Quench detection system

* Quench

Severe cavity fault

Loss of superconductivity of the cavity walls

* Quench detection system

Works very well
In total: not so many quenches

Based on the determination of the loaded quality factor
(in decay)

Soft quenches are not so easy to detect
False positive

« 07/08/2020 till 11/18/2020, 34 snap shots were saved
triggered by the quench detection (thanks to Nicholas
Walker)

» 18/34 were real quenches
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J. Branlard et. al., “Superconducting cavity quench detection and prevention for the European

XFEL,” 16th International Conference on RF Superconductivity, 2013.
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Anomaly detection for SRF cavities
Modeling approach

Vi) Vp,
Vo Vo
Eletromagnetic oscillation
l FP,I (f)} _ [_'1‘-’1,!2 —Aw(t)] [VP,I(f)_
\ V Veol(t)| |Aw(t) —w Veolt
VEIQ Nonlinear Model V:|Q ro(t) (t) 1/2 ] ] )-
%] (electromagnetic + "5 49w, [VRIO] _ [ cos(op)
mechanical model) wi/2 VF,Q(t)d B _ms(éPJr%)
—_ rward
F Probe
;gm;/ L Mechanical deformation
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Advanced Fault Diaghosis
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Courtesy: Ayla Nawaz
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{| Probe model R
(GRS Voltage _
- (t) = f(x(t))

y(t) = g(z(t))

=

Forward Voltage

-100 (Amplitude/Phase)

500 1000 1500
Samples

Parity space
« Solve both electromagnetic
equations for detuning Aw

* Residual is the difference (small
if model fits well, large
otherwise)

+ Little calculation effort
- Sensitive to noise
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Unscented Kalman filter

Kalman filter for nonlinear systems

Predict and update steps
(weighting model and new
measurements)

Calculation intensive
Optimal filtering (if Gaussian noise)

residuals

Parameter estimation

« Calculate detuning Aw and
half bandwidth w1/2 from
forward and probe signals

+ Little calculation effort
- Sensitive to noise
+ Good physical interpretability
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| Probe model
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Parity space
« Solve both electromagnetic
equations for detuning Aw

* Residual is the difference (small
if model fits well, large
otherwise)

+ Little calculation effort
- Sensitive to noise
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Unscented Kalman filter

Kalman filter for nonlinear systems

Predict and update steps
(weighting model and new
measurements)

Calculation intensive
Optimal filtering (if Gaussian noise)

residuals

Parameter estimation

« Calculate detuning Aw and
half bandwidth w1/2 from
forward and probe signals

+ Little calculation effort
- Sensitive to noise
+ Good physical interpretability
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Advanced Fault Diaghosis

0.02
z ,,W Residual generation Residual evaluation
= 20 &0
Em‘/ L — Nonlinear 002 ——— —
£ | Probe -0.02 02
=0 500 1000 1500 Voltage _ model ry
(t) = f(z(t)) _
Forward residuals
ol y(t) = g(a(1))
% ofl Prove =T Forward Voltage > Generalized
ng o (Amplitude/Phase) likelihood ratio test
500 1000 1500 Generalized
Samples likelihood
ratio
500 1000 1500
. . . Gaussian Distribution
 Generalized likelihood test 04 A\/’\ — Samples v
. . ‘e . 0.35 / \ —5£0
« Anomaly is significant change in |03 F /N
otherwise white Gaussian process  3°* / // \ \
Z 02 .
* GLR = Generalized likelihood ratio £, / / |
o /
* GLR follows chi-square ol //’
0.05
« Choose a desired false positive rate o —
Residualsir, )
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Residuals

Generalized likelihood ratio

« Amplification of small anomalies

 Clear distinction between different kind of faults

Quench

3
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Advanced Fault Diaghosis

Anomaly detection for the SRF cavities
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Summary and Conclusion

Give notice
Inform operator Supervisory
« Fast model is needed to calculate the residual module
« Goal: Online fault detection on all 808 cavities with
. : . Tak ti
» Allows for instantaneous automatic reaction e aggon
» Direct feedback to operators Collecting Collecting
* Online root cause analysis (what kind of failure occurred, where, module module
etc.)
o . : N normal
 In principle: calculation is re_a_ll-tlme capable (has been W warning
demonstrated for a few cavities) F fault
« BUT: Bandwidth limitations! All signals need to be Component > Component Component
collected fast enough module module module
» Infrastructure has been built up (Trip Event Logger): CRYO MODULES)
« Modular (other modules can easily be added Kreen 0000000002
« Can deal with different control systems ‘.I> wavecues | |7 [IIIIIIID
« Can switch between online and offline data 2800000008
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Conclusion

* Models / digital twins help
« Ifitis only to test infrastructure
« But also for algorithm training and for model-based algorithms

* Requirements:

» Speed: Online capable to fast “enough”
* Robustness: Need to deal with or include errors (Quadrupole offsets, different field energy, etc.)

» Performance: Accurate enough (really depends on the application)
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Thank you



Contact

DESY. Deutsches Annika Eichler
Elektronen-Synchrotron MSK
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www.desy.de +49 40 8998 4041



