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LEAPS
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League of European Accelerator based-Photon Sources

Goal

actively and constructively promote and ensure the 

quality and impact of fundamental, applied and 

industrial research carried out at their facilities

LEAPS Integrated Platform – LIP

bring together experts in the field of Digital 

Twinning, Machine Learning and Virtual 

Diagnostic

• set up a detailed survey of the ongoing 

activities within LEAPS on DT, ML & VD

• draw up a summary document, which will 

constitute the cornerstone of the LIP 

project

https://leaps-initiative.eu/
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Digital Twin 
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General architecture in LIP

• experimentalists can get familiar with the facilities  more efficient experiments

• support the operators to increase the performance of the facility with respect to the experiments

• capability to test new algorithms for control and optimization also exploiting machine learning 

• if  real-time capable, usage for online control and diagnosis. 

 support on the way towards more automation / autonomy

Element 1 Element 2

input output

source Transport 1

Accelerator Photon transport

physical twin

noise

digital twin

Advanced 

diagnostics

optimizer

output

Courtesy: Maxence Thevenet
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Increasing autonomy
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Current research topics along this line at DESY

• Data acquisition and data analysis (pipelines)

• Get all relevant signals and provide understanding

• Provide data infrastructure, interfaces, etc.

• (Surrogate) modelling, simulations, digital twins

• Understanding physics

• Requirement for predictions, development and control

Element 1 Element 2

input output

source Transport 1

Accelerator Photon transport

physical twin

noise

digital twin

Advanced 

diagnostics

optimizer

output

Courtesy: Maxence Thevenet

• Fault diagnosis and supervisory control

• Predict faults, prevent failures

• Protect the system

• Optimization and feedback control algorithms

• Push the way of operation

• Optimize performance
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Increasing autonomy
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Current research topics along this line at DESY

• Data acquisition and data analysis (pipelines)

• Get all relevant signals and provide understanding

• Provide data infrastructure, interfaces, etc.

• (Surrogate) modelling, simulations, digital twins

• Understanding physics

• Fault diagnosis and supervisory control

• Predict faults, prevent failures

• Protect the system

• Optimization and feedback control algorithms

• Push the way of operation

• Optimize performance

Provides the data for 

modeling identification 

and validation

Possibly provides the 

interface for online 

interaction

Requirement for diagnosis, 

predictions, and control



RL for accelerator operation



Page 7

Reinforcement Learning
Artificial intelligence as an enabler for autonomy

Reinforcement Learning

• machine learning algorithm with an 

• Agent interacts with environment 

(simulation or real world),

• Take action based on

observation

• Receiving reward

•  Plan ahead

Examples and applications

• Games (AlphaGo)

• Personalized recommendations

• Robotics

• Traffic light control

• …

Sutton: Reinforcement Learning, an introduction

Goal: Apply reinforcement learning (RL) to accelerator operation

• Collaboration between KIT & DESY 2 years

• 2 years project funded by Helmholtz AI: Initiative and 
Networking Fund by the Helmholtz Association

• Research facilities: 

• ARES (DESY)

• FLUTE (KIT)
Transferability?

WAO | Annika Eichler | 10/08/2021
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Beam Focusing
Proof of concept example at ARES

Task 

• Position and focus the electron beam on a 

diagnostic screen in the ARES Experimental Area

Motivation

• Recurring problem from ARES operation.

• Simple enough to still understand what agent does, 

yet complex enough to be interesting.

• ARES as an easily accessible testbed to eventually 

map experiences to larger machines like European 

XFEL

Quad 3

Screen

Quad 1

Quad 1

Courtesy: Oliver Stein & Jan Kaiser
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Gym Environments for Particle Accelerator Applications

Accelerator-Environments Project

• Train with fast iteration in simulation, apply on machine

• Collection of environments implemented around 

OpenAI Gym 

• Very simple to move from simulation to machine,

various backends are provided

• Interface for reinforcement learning and 

optimisation algorithms

• Compatible with popular RL and optimisation libraries such 

as Stable Baselines3 and SciPy Optimize

„Digital Twin“ with standardised simulation and machine interfaces

Train RL agent

Run on machine

Optimisation

Courtesy: Oliver Stein & Jan Kaiser
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Defining an Optimisation Problem

Objective

Natural logarithm of the weighted sum of parameter 

differences

Actuators

Beam Parameters

Reading Beam Parameters

1. Sum over pixels in x, y → filter to clean up

2. Find widest interval edges > 0.5x the maximum, 

call it FWHM

3. Beam position = centre between interval edges

4. Beam size = FWHM / 2.355

WAO | Annika Eichler | 10/08/2021

Proof of concept example at ARES

Courtesy: Oliver Stein & Jan Kaiser
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Translation to a Reinforcement Learning Task

Reward

Improvement in objective (difference of current and last 

step‘ s objective)

Observation

Beam parameters (of this and previous time step)

Actuator values

Action

Delta of actuators values

Training

• Twin Delayed DDPG (TD3)

• Benchmarked Stable Baselines3 implementation

• Open AI Gym environment implementation

• Different beams and objectives are seen in training

WAO | Annika Eichler | 10/08/2021

Proof of concept example at ARES

Courtesy: Oliver Stein & Jan Kaiser
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Control Room Application
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Prototype

Courtesy: Oliver Stein & Jan Kaiser
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Summary and Outlook
What’s next and what are the challenges

At ARES

• Transfer from simulation to machine has successfully demonstrated

• Otherwise training would be impossible (600 000 steps in simulation ~ 5 hours, 33 steps/seconds, 0.03 

seconds/step)

• For training in simulation a fast and accurate model is required

• Test agent on FLUTE (simulation and real accelerator) for transferability

• How to train and act more efficiently? Training 600 000 steps, actions 5-10 steps needed

• Include errors in simulation (quadrupole offset, screen offset, etc.)

Move to more complex tasks:

• ARES start-up

• RL applications at FLASH and the European XFEL  SASE tuning at FLASH 

• Problem: good and fast simulation required
WAO | Annika Eichler | 10/08/2021

Simulation 

(train)

Experiment

(act)

Time per step 0.03 seconds 10-30 seconds

Number of steps 600 000 5-10



Fault diagnosis for SRF 

cavities
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Quench detection system
In operation at European XFEL

• Quench

• Severe cavity fault

• Loss of superconductivity of the cavity walls

• Quench detection system

• Works very well

• In total: not so many quenches

• Based on the determination of the loaded quality factor 

(in decay)

• Soft quenches are not so easy to detect

• False positive

• 07/08/2020 till 11/18/2020, 34 snap shots were saved 

triggered by the quench detection (thanks to Nicholas 

Walker)

• 18/34 were real quenches

WAO | Annika Eichler | 10/08/2021

J. Branlard et. al., “Superconducting cavity quench detection and prevention for the European 

XFEL,” 16th International Conference on RF Superconductivity, 2013. 
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Anomaly detection for SRF cavities
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Modeling approach

xfel.eu

Nonlinear Model 

(electromagnetic + 

mechanical model)

VF,I

VF,Q

VP,I

VP,Q

VF,I

VF,Q

VP,I

VP,Q

Eletromagnetic oscillation

Mechanical deformation

Probe
Forward

Forward

Probe
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Probe
Forward

Forward

Probe

Advanced Fault Diagnosis
Anomaly detection for the SRF cavities

residuals

Courtesy: Ayla Nawaz

xfel.eu

Forward Voltage

(Amplitude/Phase)

Probe

Voltage

Residual generation

Nonlinear 

model

Parity space

• Solve both electromagnetic 

equations for detuning Δω

• Residual is the difference (small 

if model fits well, large 

otherwise)

+ Little calculation effort

- Sensitive to noise 

Unscented Kalman filter

• Kalman filter for nonlinear systems

• Predict and update steps 

(weighting model and new 

measurements)

- Calculation intensive

+ Optimal filtering (if Gaussian noise)

Parameter estimation

• Calculate detuning Δω and 

half bandwidth ω1/2 from 

forward and probe signals

+ Little calculation effort

- Sensitive  to noise 

+ Good physical interpretability

WAO | Annika Eichler | 10/08/2021
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Probe
Forward

Forward

Probe

Advanced Fault Diagnosis
Anomaly detection for the SRF cavities

residuals

Courtesy: Ayla Nawaz

xfel.eu

Forward Voltage
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• Residual is the difference (small 
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Unscented Kalman filter

• Kalman filter for nonlinear systems

• Predict and update steps 

(weighting model and new 

measurements)

- Calculation intensive

+ Optimal filtering (if Gaussian noise)

Parameter estimation

• Calculate detuning Δω and 

half bandwidth ω1/2 from 

forward and probe signals

+ Little calculation effort

- Sensitive  to noise 

+ Good physical interpretability
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Advanced Fault Diagnosis
Anomaly detection for the SRF cavities

Generalized 

likelihood ratio test

residuals

xfel.eu

Forward Voltage

(Amplitude/Phase)

Probe

Voltage

Residual generation Residual evaluation

Generalized

likelihood

ratio

Nonlinear 

model

Probe
Forward

Forward

Probe

WAO | Annika Eichler | 10/08/2021

• Generalized likelihood test

• Anomaly is significant change in 

otherwise white Gaussian process

• GLR = Generalized likelihood ratio

• GLR follows chi-square

• Choose a desired false positive rate
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Residuals

• Amplification of small anomalies

• Clear distinction between different kind of faults

WAO | Annika Eichler | 10/08/2021

Generalized likelihood ratio 

Quench Field emitter
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Advanced Fault Diagnosis
Anomaly detection for the SRF cavities

Generalized 

likelihood ratio test

residuals

anomaly

yes/no

What kind?

xfel.eu

Forward Voltage

(Amplitude/Phase)

Probe

Voltage

Residual generation Residual evaluation

Unsupervised

classification

Generalized

likelihood

ratio

Nonlinear 

model

Probe
Forward

Forward

Probe
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• Unsupervised classification

• K-means clustering

• Dynamic time warping

• Or Euclidian norm but on a 

subset of the time signal
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Summary and Conclusion

• Fast model is needed to calculate the residual

• Goal: Online fault detection on all 808 cavities with

• Allows for instantaneous automatic reaction

• Direct feedback to operators

• Online root cause analysis (what kind of failure occurred, where, 

etc.) 

• In principle: calculation is real-time capable (has been 

demonstrated for a few cavities)

• BUT: Bandwidth limitations! All signals need to be

collected fast enough

• Infrastructure has been built up (Trip Event Logger):

• Modular (other modules can easily be added

• Can deal with different control systems

• Can switch between online and offline data

WAO | Annika Eichler | 10/08/2021

What’s next and what are the challenges

Component 

module

Collecting 

module

Collecting 

module

Supervisory 

module

Component 

module

Component 

module

Give notice

Inform operator

Take action

N  normal

W warning

F  fault
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Conclusion

• Models / digital twins help

• If it is only to test infrastructure

• But also for algorithm training and for model-based algorithms

• Requirements: 

• Speed: Online capable to fast “enough”

• Robustness: Need to deal with or include errors (quadrupole offsets, different field energy, etc.)

• Performance: Accurate enough (really depends on the application)

WAO | Annika Eichler | 10/08/2021

Models can support operations
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